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Orthogonal matrices

01. Since the matrix is 3×3, to find the third column, it is sufficient to calculate the cross product
of the two columns of the matrix, i.e. (1/

√
2,−1/

√
2, 0) ∧ (1/

√
6, 1/
√

6, 2/
√

6). The result is
(−2/

√
12,−2/

√
12, 2/

√
12) or, to simplify, (−1/

√
3− 1/

√
3, 1/
√

3), so the matrix is

P =

 1/
√

2 1/
√

6 −1/
√

3

−1/
√

2 1/
√

6 −1/
√

3

0 2/
√

6 1/
√

3

 But the third column can
also be the opposite of the
cross product, so the other
possible matrix is:

P =

 1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 2/
√

6 −1/
√

3


02. Since Q must be orthogonal, the module of the first column must be 1. Then to find the entry

q31 we must set (−2/3)2 + (2/3)2 + q231 = 1. We find q31 = ±1/3.
The same argument applies to the second column and we find q32 = ±2/3.
But the two columns must be orthogonal so, if q31 = 1/3 then q32 = 2/3 and if q31 = −1/3
then q32 = −2/3
Since the matrix is 3×3, to find the third column, it is sufficient to calculate the cross product
of the two columns of the matrix.
In the first case (−2/3, 2/3, 1/3) ∧ (2/3, 1/3, 2/3) = (1/3, 2/3,−2/3)
In the second case (−2/3, 2/3,−1/3) ∧ (2/3, 1/3,−2/3) = (−1/3,−2/3,−2/3)
But the third column can also be the opposite of the cross product, so there are four possible
ways to construct the matrix:−2/3 2/3 1/3

2/3 1/3 2/3
1/3 2/3 −2/3

−2/3 2/3 −1/3
2/3 1/3 −2/3
1/3 2/3 2/3

−2/3 2/3 −1/3
2/3 1/3 −2/3
−1/3 −2/3 −2/3

−2/3 2/3 1/3
2/3 1/3 2/3
−1/3 −2/3 2/3


Spaces with a scalar product

11. a. Since the space is very simple, we can avoid Gram-Schmidt process.
First we calculate an orthogonal basis for W . First vector is (1, 1, 0).
Second vector is a vector of W , i.e. a linear combination of the two generators of W :
a(1, 1, 0) + b(0, 1, 1) = (a, a+ b, b). This vector should be orthogonal to (0, 1, 1), that is, we
must have: 〈(a, a+ b, b), (0, 1, 1)〉 = 0 ⇒ 2a+ b = 0.
By instance a = 1 ; b = −2, hence the vector (1,−1,−2).

By normalization we get the o.n. basis
(1, 1, 0)√

2
,

(1,−1,−2)√
6

.

The projection of v onto W must be calculated by means of the o.n. basis and is

p =

〈
(1, 1, 0)√

2
, (1, 2, 0)

〉
(1, 1, 0)√

2
+

〈
(1,−1,−2)√

6
, (1, 2, 0)

〉
(1,−1,−2)√

6
=

=
3

2
(1, 1, 0)− 1

6
(1,−1,−2) =

(
4

3
,

5

3
,

1

3

)
.

b. We have p− v =

(
1

3
,− 1

3
,

1

3

)
. This vector is orthogonal to (1, 1, 0) and to (0, 1, 1) and so,

by bilinearity it is orthogonal to any linear combination or these two vectors, i.e. to any
vector in W .

12. To find the distance, we must calculate the projection of the vector (1, 1, 1, 1) onto W . To do
this we must find an orthonormal basis of W by means of Gram-Schmidt algorithm.
Set v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 2), v3 = (1, 1, 1, 0). Then:
v′′1 = (0, 1, 0, 0) (since its module is 1)
v′′2 = (0, 0, 1, 2)/

√
5 (v2 is already orthogonal to v1. It is sufficient to normalize it)

v′3 = (1, 1, 1, 0)− 〈(1, 1, 1, 0), (0, 1, 0, 0)〉(0, 1, 0, 0)− 〈(1, 1, 1, 0), (0, 0, 1, 2)/
√

5〉(0, 0, 1, 2)/
√

5 =
= (1, 1, 1, 0)− (0, 1, 0, 0)− (0, 0, 1/5, 2/5) = (1, 0, 4/5,−2/5).
To simplify calculation, set v′3 = (5, 0, 4,−2), and get v′′3 by normalization: v′′3 = (5, 0, 4,−2)/

√
45

Now the projection is 〈(1, 1, 1, 1), (0, 1, 0, 0)〉(0, 1, 0, 0)+〈(1, 1, 1, 1), (0, 0, 1, 2)/
√

5〉(0, 0, 1, 2)/
√

5+
〈(1, 1, 1, 1), (5, 0, 4,−2)/

√
45〉(5, 0, 4,−2)/

√
45=(0, 1, 0, 0) + 3/5(0, 0, 1, 2) + 7/45(5, 0, 4,−2)

Final result is p = (7/9 , 1 , 11/9 , 8/9).
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In order to be sure that there is no calculation error, it is advisable to verify that p − v =
= (7/9 , 1 , 11/9 , 8/9)− (1, 1, 1, 1) = (2/9 , 0 , −2/9 , 1/9) is orthogonal to W , i.e. to each
of the three vectors v1, v2, v3. We omit this standard calculation.
The distance is the module of the vector p− v = (2/9 , 0 , −2/9 , 1/9), that is

√
5/81.

13. The matrix is definite positive. This can be verified in several ways, by instance by observing

that the two principal minors of A =

(
2 2
2 5

)
are positive. This is enough to prove that it

induces the following scalar product: 〈(x, y), (x1, y1)〉∗ = (x y) ·A ·
(
x1
y1

)
To find an an o.n. basis of IR2 we apply Gram-Schmidt process to the basis v1(1, 0), v2(0, 1):

First normalize v1: ‖ v1 ‖∗=
√
〈(1, 0), (1, 0)〉∗ =

√
(1 0)

(
2 2
2 5

)(
1
0

)
=
√

2 ⇒ v′′1 =
(1, 0)√

2

Then v′2 = (0, 1)−
〈

(0, 1),
(1, 0)√

2

〉
∗

(1, 0)√
2

= (0, 1)− 〈(0, 1), (1, 0)〉∗
(1, 0)

2
.

We must calculate the scalar product: 〈(0, 1), (1, 0)〉∗ = (0 1)

(
2 2
2 5

)(
1
0

)
= 2

So v′2 = (0, 1)− 2
(1, 0)

2
= (−1, 1). To conclude the process, we must normalize v′2

‖ v′2 ‖=
√
〈(−1, 1), (−1, 1)〉∗ =

√
(−1 1)

(
2 2
2 5

)(
−1

1

)
=
√

3 ⇒ v′′2 =
(−1, 1)√

3

14. a. The product is a scalar product only if the matrix is definite positive. We can easily check
it by using Sylvester’s law of inertia and reducing A both by rows and columns: 1 2 0

2 8 k
0 k 1

 R2 → R2 − 2R1

C2→ C2 − 2C1

 1 0 0
0 4 k
0 k 1

 R3 → R3 − (k/4)R2

C3→ C3 − (k/4)C2

 1 0 0
0 4 0
0 0 1− k2/4


By Sylvester’s law of inertia, the eigenvalues of the reduced matrix have the same signs as
those of the matrix A, so they are all positive if and only if 1− k2/4 > 0 that is if and only
if −2 < k < 2.

b. Let us calculate all the three scalar products

〈(1, 0, 1), (1, 1, 0)〉∗ = ( 1 0 1 )

 1 2 0
2 8 k
0 k 1

1
1
0

 = ( 1 2 + k 1 )

1
1
0

 = 3 + k

So they are orthogonal if k = −3, but for this k, the product 〈 , 〉∗ is not a scalar product.
In the same way, we have:
〈(1, 0, 1), (0, 1, 0)〉∗ = 2 + k but if k = −2, the product 〈 , 〉∗ is not a scalar product.
〈(1, 0, 1), (−1, 1, 0)〉∗ = 1 +k. This time, if k = −1, the product 〈 , 〉∗ is a scalar product and
the two vectors are orthogonal.

c. Let k = −1. We must choose a basis of IR3 and apply Gram-Schmidt algorithm. Since the
two vectors (1, 0, 1), (−1, 1, 0) are already orthogonal, it is convenient to choose a basis that
contains the two vectors, by instance B : v1(1, 0, 1), v2(−1, 1, 0), v3(0, 0, 1). This way the
first two step of the algorithm are very simple:
First normalize v1: We have ‖ v1 ‖2= (1 0 1) ·A · (1 0 1)T = 2. Hence v′′1 = (1, 0, 1)/

√
2.

Then normalize v2: We have ‖ v2 ‖2= (−1 1 0)·A·(−1 1 0)T = 5. Hence v′′2 = (−1, 1, 0)/
√

5.

v′3 = (0, 0, 1)−〈(0, 0, 1), (1, 0, 1)/
√

2〉∗(1, 0, 1)/
√

2−〈(0, 0, 1), (−1, 1, 0)/
√

5〉∗(−1, 1, 0)/
√

5 =
We must calculate the two scalar products:
〈(0, 0, 1), (1, 0, 1)/

√
2〉∗ = (0 0 1) ·A · (1 0 1)T = 1/

√
2

〈(0, 0, 1), (−1, 1, 0)/
√

5〉∗ = (0 0 1) ·A · (−1 1 0)T /
√

5 = 1/
√

5. So v′3 = (−7/10 , 1/5 , 1/2).
To simplify calculation set v′3(−7, 2, 5), and get v′′3 by normalization:
‖ v′′3 ‖2= (−7, 2, 5) ·A · (−7, 2, 5)T = 30.
Finally, we get the following o.n. basis: (1, 0, 1)/

√
2 , (−1, 1, 0)/

√
5 , (−7, 2, 5)/

√
30.
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15. The inequality is | 〈f1, f2〉 | ≤ ‖ f1 ‖‖ f2 ‖. So we must calculate three scalar products:

〈f1, f2〉 =

∫ 2

1

ax2 + b

x
· 1

x
dx =

∫ 2

1

ax2 + b

x2
dx =

[
ax− b

x

]2
1

= a+
b

2

‖ f1 ‖2= 〈f1, f1〉 =

∫ 2

1

(
ax2 + b

x

)2

dx =

[
a2x3

3
+ 2abx− b2

x

]2
1

=
7

3
a2 + 2ab+

b2

2

‖ f2 ‖2= 〈f2, f2〉 =

∫ 2

1

(
1

x

)2

dx =

[
− 1

x

]2
1

=
1

2

So we must verify that

∣∣∣∣a+
b

2

∣∣∣∣ ≤
√(

7

3
a2 + 2ab+

b2

2

)
1

2
.

Taking squares: a2 +
b2

4
+ ab ≤ 7

6
a2 + ab+

b2

4
which is obviously true for any a and b.

Furthermore it is an equality when a = 0 and any b.

16. Set v1 = 1, v2 = x, v3 = x2.

a. To find an an orthonormal basis of V we apply Gram-Schmidt process to the basis v1, v2:

First normalize v1. But ‖ v1 ‖2=

∫ 1

0

1 dx = 1. Hence v′′1 = 1.

Then v′2 = x− 〈1, x〉 1 = x−
(∫ 1

0

x dx

)
1 = x− 1

2
. To conclude we must normalize v′2

‖ v′2 ‖2=

∫ 1

0

(
x− 1

2

)2

dx =

[
x3

3
− x2

2
+
x

4

]1
0

=
1

12
. Hence v′′2 =

√
12

(
x− 1

2

)
=
√

3(2x−1)

To find an an orthonormal basis of V1 we must continue the Gram-Schmidt process up to
the vector v3:
v′3 = x2 −

〈
1, x2

〉
1−

〈√
3(2x− 1), x2

〉√
3(2x− 1) =

= x2 −
(∫ 1

0

xdx

)
1− 3

(∫ 1

0

(2x3 − x2)dx

)
(2x− 1) = x2 − 1

3
− 3

[
x4

2
− x3

3

]1
0

(2x− 1) =

= x2 − 1

3
− 1

2
(2x− 1) = x2 − x+

1

6
.

To conclude we must normalize v′3

‖ v′3 ‖2=

∫ 1

0

(
x2 − x+

1

6

)2

dx =

[
x5

5
− x4

2
+

4x3

9
− x2

6
+

1

36
x

]1
0

=
1

180

So v′′3 =

(
x2 − x+

1

6

)√
180 =

√
5(6x2 − 6x+ 1)

b. The projection of f onto V must be calculated by means of the o.n. basis and is

p = 〈1, x2〉 1 + 〈
√

3(2x− 1), x2〉
√

3(2x− 1) =
1

3
· 1 + 3

1

6
(2x− 1) = x− 1

6
The relation between f(x) and its projection p(x) is that f(x)− p(x) is orthogonal to V . In

fact f(x)− p(x) = x2−x+
1

6
and, as it follows from the previous calculations, this function

is orthogonal to 1 and to
√

3(2x − 1) and so, by bilinearity it is orthogonal to any linear
combination or these two functions, i.e. to any function in V .
The minimum property means that the distance between f and p is less or equal to the
distance between p and any function in V .

The distance is ‖ f(x)− p(x) ‖=
∥∥∥∥ x2 − x+

1

6

∥∥∥∥ =
1√
180

, as already calculated.

17. Put v1 = 1/x, v2 = x.

a. To find an an orthonormal basis of V we apply Gram-Schmidt process to the basis v1, v2:

First normalize v1. But ‖ v1 ‖2=

∫ 2

1

1

x2
dx =

1

2
. Hence v′′1 =

√
2

x
.



Orthonormal bases, norms and condition number - Answers page 4 of 6

10/07/2013

Then v′2 = x−

〈√
2

x
, x

〉 √
2

x
= x− 2

(∫ 2

1

dx

)
1

x
= x− 2

x
. Now we must normalize v′2

‖ v′2 ‖2=

∫ 1

0

(
x− 2

x

)2

dx =

[
x3

3
− 4

x
− 4x

]2
1

=
1

3
. Hence v′′2 =

√
3

(
x− 2

x

)
b. The projection of f onto V must be calculated by means of the o.n. basis and is

p =

〈
x2,

√
2

x

〉 √
2

x
+

〈
x2,
√

3

(
x− 2

x

)〉√
3

(
x− 2

x

)
= 2

(∫ 2

1

x dx

)
1

x
+

+3

(∫ 2

1

(x3 − 2x) dx

)(
x− 2

x

)
= 2

(
3

2

)
1

x
+ 3

(
3

4

)(
x− 2

x

)
= − 3

2x
+

9

4
x

c. We have:

∫ 2

1

f(x)p(x) dx = 〈f(x), p(x)〉 =

〈
f(x),

〈
f(x),

1

x

〉
1

x
+ 〈f(x), x〉x

〉
By bilinearity, the second side is〈
f(x),

1

x

〉〈
f(x),

1

x

〉
+ 〈f(x), x〉 〈f(x), x〉 =

〈
f(x),

1

x

〉2

+ 〈f(x), x〉2 =

=

(∫ 2

1

f(x)
1

x
dx

)2

+

(∫ 2

1

f(x)x dx

)2

From here easily the conclusion.

18. a. We have to prove that 〈, 〉1 is symmetric, bilinear and positive. The first two are obvious. As

for the third one, observe that 〈f, f〉1 =

∫ 1

−1
f2(x)x2 dx cannot be negative since f2(x)x2 is

non negative and −1 < 1. The product 〈f, f〉1 can be 0 if and only if f is the null function
since x2 has only one zero in [−1, 1].

b. Just apply Gram-Schmidt process; let us set v1 = 1 and v2 = x

First normalize v1. But ‖ v1 ‖21=

∫ 1

−1
1 · 1 ·x2 dx =

2

3
. Hence v′′1 =

√
3

2
.

Now observe that 〈1, x〉1 = 0 since

∫ 1

−1
1 ·x ·x2 dx = 0. This means that to conclude we

have only to normalize v2. But ‖ v2 ‖21=

∫ 1

−1
x ·x ·x2 dx =

2

5
. Hence v′′2 =

√
5

2
x.

19. Let us calculate 〈2− x, x〉 =

∫ a

0

(2− x)x dx =

∫ a

0

2x− x2 dx =

[
x2 − x3

3

]a
0

= a2 − a3

3
So 〈2− x, x〉 = 0 only if a = 3 (we exclude a = 0).
To calculate the projection we must build an orthonormal basis for the subspace. Since the
two functions are orthogonal, we only need to normalize them.

‖ 2− x ‖2=

∫ 3

0

(2− x)2 dx =

∫ 3

0

4− 4x+ x2 dx =

[
4x− 2x2 +

1

3
x3
]2
0

= 3

‖ x ‖2=

∫ 3

0

x2 dx =

[
1

3
x3
]2
0

= 9 The o.n. basis is:
2− x√

3
;

x

3

The projection is:

p =

〈
x2,

2− x√
3

〉
2− x√

3
+
〈
x2,

x

3

〉 x
3

=

(
1

3

∫ 3

0

2x2 − x3 dx
)

(2− x) +

(
1

9

∫ 3

0

x3 dx

)
x =

=
1

3

[
2x3

3
− x4

4

]3
0

(2− x) +
1

9

[
x4

4

]3
0

x =
1

3

(
− 9

4

)
(2− x) +

1

9

81

4
x = − 3

2
+ 3x

Matrix norms and condition number

21. Since A is symmetric it suffices to calculate its eigenvalues: det

(
1− x −2
−1 −1− x

)
= x2 − 5

So λ1 =
√

5 λ2 = −
√

5. It follows that ‖ A ‖2=
√

5 and cond2(A) = 1.
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22. Since A is non-symmetric we must use ATA

ATA =

 1 2 0
1 −2 0
0 0 3

 1 1 0
2 −2 0
0 0 3

 =

 5 −3 0
−3 5 0

0 0 9


The eigenvalues of ATA are λ1 = 2 λ2 = 8 λ3 = 9, so its singular values are

√
2, 2
√

2, 3. It
follows that ‖ A ‖2= 3 and cond2(A) = 3/

√
2.

The 1-norms of the columns of A are all 3, so ‖ A ‖1= 3.
The 1-norms of the rows of A are 2, 4, 3, so ‖ A ‖∞= 4.
To calculate cond1(A) and cond∞(A) we need to use A−1.

With few passages we get A−1 =

 1/2 1/4 0
1/2 −1/4 0
0 0 1/3


The 1-norms of the columns of A−1 are 1, 1/2, 1/3, so ‖ A−1 ‖1= 1.
The 1-norms of the rows of A−1 are 3/4, 3/4, 1/3, so ‖ A−1 ‖∞= 3/4.
We conclude: cond1(A) =‖ A ‖1 · ‖ A−1 ‖1= 3 and cond∞(A) =‖ A ‖∞ · ‖ A−1 ‖∞= 3

23. a. Since A is symmetric, we get ‖ A ‖2= 5.
The 1-norms of the columns of A are 5, 7, 5, so ‖ A ‖1= 7
Since A is symmetric, we have ‖ A ‖∞=‖ A ‖1= 7.

b. From the given data we have cond2(A) = 5/2

c. We have ‖ b ‖=
√

3 and ‖ δb ‖=‖ b− b1 ‖= 1.

The well-known inequality is
‖ x− x1 ‖2
‖ x ‖2

≤ cond2(A)
‖ δb ‖
‖ b ‖

=
5

2

1√
3

=
5

2
√

3
' 1.44

24. a. We must calculate det(A− xI).
It is advantageous to make some elementary operations on the matrix A− xI

det

 −1− x 2 −1
2 2− x −2
−1 −2 −1− x

 =
[R3 → R3 +R1]

det

 −1− x 2 −1
2 2− x −2

−2− x 0 −2− x

 =

=
[C3 → C3 − C1]

det

 −1− x 2 x
2 2− x −4

−2− x 0 0

 = (−2− x) det

(
2 x

2− x −4

)
=

= (−2− x)(−8− 2x+ x2)
Since the roots of the quadratic polynomial −8− 2x+ x2 are 4 and −2, we deduce that the
eigenvalues of A are −2,−2, 4.

b. From the given data we have ‖ A ‖2= 4 and cond2(A) = 4/2 = 2

c. We remark that if λ is an eigenvalue of A then λ+ k is an eigenvalue of A+ kI. So:
The eigenvalues of A+ I are −1,−1, 5 and cond2(A+ I)=5
The eigenvalues of A− I are −3,−3, 3 and cond2(A− I)=1
The eigenvalues of A− 2I are −4,−4, 2 and cond2(A− 2I)=2
A− I has the best condition number and A+ I has the worst one.

25. From the given data we can calculate:

cond2(A) '
√

91.6986

0.0022
=
√

41681.182 ' 204.160 In our case:

b = (1, 4, 4, 4) and ‖ b ‖= 7 δb = (0.1, 0,−0.1, 0) and ‖ δb ‖= 0.02 ‖ x ‖' 2.42

The well-known inequality can be written as

‖ δx ‖≤‖ x ‖ cond(A)
‖ δb ‖
‖ b ‖

' 2.42 · 204
0.02

7
' 1.411

From here, without any further calculation, we can only say that the distance of each component
of x1 from the corresponding component of x cannot be bigger than 1.411. By example, if
x = (a, b, c, d), then a = 2/3± 1.411.
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26. Since A is non-symmetric, me must consider AT
k ·Ak =

 4 6 0
6 13 0
0 0 k2


Its eigenvalues are 1, 16, k2 and its singular values
are 1, 4, | k |.
This means that we can can calculate cond2(Ak)
for all k 6= 0. There are three cases:

If 1 ≤| k |≤ 4 then cond2(Ak) = 4
If | k |< 1 then cond2(Ak) = 4/ | k |
If | k |> 4 then cond2(Ak) =| k | /1
From here one can easily draw the graphic of the
function y = f(k) which is symmetric with respect
to the y axis.

4
3
2
1

0 2 3 41 655 4 36 12
k

y

27. a. Since A must be orthogonal, the module of the first column must be 1. Then to find the
entry a31 we must set (6/7)2 + (2/7)2 + a231 = 1. We find a31 = ±3/7. Let us choose
a31 = 3/7. Now, by symmetry a12 = 2/7 and a13 = 3/7.
Since first column and second column should be orthogonal, then the entry a32 must be
−6/7 and a32 = a23. Finally a33 = 2/7, since third column is orthogonal to the other ones.
The matrix A is orthogonal, so cond2(A) = 1.
Since A is symmetric, its eigenvalues are all real and can only be 1 and −1. It is impossible
for all the eigenvalues to be 1, because in this case A would be I and by the same argument
all the eigenvalues cannot be −1.

b. The eigenvalues of A−kI are 1−k and −1−k, so it makes sense to calculate cond2(A−kI)
for k 6= ±1.
One can easily check that:
If k > 1, then the absolute values of the eigenvalues are k + 1, k − 1 and k + 1 > k − 1, so

in this case cond2(A) =
k + 1

k − 1
If 0 < k < 1, then the absolute values of the eigenvalues are k + 1, 1− k and k + 1 > 1− k,

so in this case cond2(A) =
k + 1

1− k
If k = 0, then the eigenvalues are 1 and −1, so in this case cond2(A) = 1
If −1 < k < 0, then the absolute values of the eigenvalues are k+ 1, 1− k and 1− k > k+ 1,

so in this case cond2(A) =
1− k
k + 1

If k < −1, then the absolute values of the eigenvalues are −k− 1, 1− k and 1− k > −1− k,

so in this case cond2(A) =
1− k
−1− k


